Acta Crystallographica Section E

## Structure Reports

 OnlineISSN 1600-5368

## Alexander Degen and Michael Bolte*

Institut für Organische Chemie, J. W. GoetheUniversität Frankfurt, Marie-Curie-Straße 11, 60439 Frankfurt/Main, Germany

Correspondence e-mail:
bolte@chemie.uni-frankfurt.de

## Key indicators

Single-crystal X-ray study
$T=100 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
$R$ factor $=0.029$
$w R$ factor $=0.074$
Data-to-parameter ratio $=13.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

# The twinned crystal structure of 3-indolylacetic acid 

Crystals of the title compound, $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{NO}_{2}$, whose structure has already been determined four times by different research groups, were found to be twinned. Satisfactory refinement is only possible if the twinning is taken into account. This kind of twinning in the monoclinic crystal system can, in principle, occur if the following condition is met: $a \cdot|\cos \beta|=c / 2$, i.e. if the short diagonal of the $a c$ plane is of the same length as $a$ or $c$ itself.

## Comment

The structure of the title compound, (I), has already been determined (Karle et al., 1964; Chandrasekhar \& Raghunathan, 1982; Pfeiffer et al., 1987; Nigović et al., 2000), but none of the authors has described any twinning.

(I)

Surprisingly, we encountered a twinned crystal and satisfactory refinement was only possible when the correct twin law, ( $101 / 010 / 00 \overline{1}$ ), was applied. This case of twinning is characterized by the fact that one of the face diagonals is of the same length as one of the axes bordering the face. As a result, the face diagonal can be an axis of the twin unit cell, whereas the other axis is reversed. The present kind of twinning in the monoclinic crystal system can, in principle, occur if the following condition is met: $a \cdot|\cos \beta|=c / 2$. The structure determinations of Chandrasekhar \& Raghunathan (1982), Pfeiffer et al. (1987) and Nigović et al. (2000) have led to acceptable results. However, Karle et al. (1964), who had used equi-inclination Weissenberg photographs and zero-level precession photographs on a thin plate-like crystal to collect the diffracted intensities, ascribed the relatively high $R$ value to the shape of the crystal and to the difficulty in estimating the density of the diffraction spots.

## Experimental

The title compound was purchased from Fluka and recrystallized from diethyl ether.

Received 29 August 2001
Accepted 18 September 2001
Online 6 October 2001

## Crystal data

$\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{NO}_{2}$
$M_{r}=175.18$
Monoclinic, $P 2_{1} / c$
$a=17.848(2) \AA$
$b=5.2214(7) \AA$
$c=9.568(1) \AA$
$\beta=105.70(1)^{\circ}$
$V=858.39(17) \AA^{3}$
$Z=4$
$D_{x}=1.356 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=175.18$
Monoclinic, $P 2_{1} / c$
$b=5.2214$ (7) $\AA$
$c=9.568$ (1) A
$V=858.39(17) \AA^{3}$
$Z=4$

## Data collection

Stoe IPDS-II two-circle
diffractometer
$\omega$ scans
Absorption correction: none
11341 measured reflections
1756 independent reflections
Mo $K \alpha$ radiation
Cell parameters from 10779
reflections
$\theta=1.7-26.5^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=100$ (2) K
Block, colourless
$0.40 \times 0.30 \times 0.20 \mathrm{~mm}$

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$
$w R\left(F^{2}\right)=0.074$
$S=1.01$
1756 reflections
128 parameters
H atoms treated by a mixture of independent and constrained refinement


Figure 1
Perspective view of (I) with the atom numbering; displacement ellipsoids are at the $50 \%$ probability level.
dual displacement parameters $\left[U(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})\right]$ using a riding model with $\mathrm{C}-\mathrm{H}($ aromatic $)=0.95 \AA$ or $\mathrm{C}-\mathrm{H}($ methylene $)=0.99 \AA$. H atoms bonded to N and O atoms were refined isotropically. The twin ratio refined to 0.416 (1)/0.584 (1).

Data collection: $X$-Area (Stoe \& Cie, 2001); cell refinement: $X$ Area; data reduction: $X$-Area; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1990).

## References

Chandrasekhar, K. \& Raghunathan, S. (1982). Acta Cryst. B38, 2534-2535.
Karle, I. L., Britts, K. \& Gum, P. (1964). Acta Cryst. 17, 496-499.
Nigović, B., Antolic, S., Kojic Prodic, B., Kiralj, R., Magnus, V. \& SalopekSondi, B. (2000). Acta Cryst. B56, 94-111.
Pfeiffer, D., Kutschabsky, L., Leibnitz, P. \& Adam, G. (1987). Cryst. Res. Technol. 22, K1-K4.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Spek, A. L. (1990). Acta Cryst. A46, C-34.
Stoe \& Cie (2001). X-Area. Stoe \& Cie, Darmstadt, Germany.

